Development parsed data¶
This is a list of all the data parsed by the current development code of cclib. For the same information for the current official release (version 1.6.2), see the regular parsed data page. Note that the information on this page may be outdated.
Description of parsed data¶
Click the attribute name in the table below to go to the notes and specifications for a particular attribute. All arrays are Numpy arrays of type ‘d’ (if containing floats) or ‘i’ (if containing integers).
Name
Description
Units
Data type
atomic orbital names
list of strings
atomic orbital overlap matrix
array of rank 2
indices of atomic orbitals on each atom
list of lists
atomic partial charges
dict of arrays of rank 1
atom coordinates
angstroms
array of rank 3
atom masses
daltons
array of rank 1
atomic numbers
array of rank 1
atomic spin densities
dict of arrays of rank 1
molecular energies with CoupledCluster corrections
eV
array of rank 2
net charge of the system
integer
number of core electrons in atom pseudopotentials
array of rank 1
sum of electronic and thermal enthalpies
hartree/particle
float
entropy
hartree/particle
float
energies of electronic transitions
1/cm
array of rank 1
oscillator strengths of electronic transitions
array of rank 1
rotatory strengths of electronic transitions
??
array of rank 1
singlyexcited configurations for electronic transitions
list of lists
symmetries of electronic transitions
list of string
sum of electronic and thermal free energies
hartree/particle
float
fragment orbital names
list of strings
fragment orbital overlap matrix
array of rank 2
names of fragments
list of strings
indices of atoms in a fragment
list of lists
coefficients and exponents of Gaussian basis functions
PyQuante format
targets for convergence of geometry optimization
array of rank 1
current values for convergence of geometry optmization
array of rank 1
current values of forces (gradients) in geometry optimization
array of rank 3
elements of the force constant matrix
array of rank 1
molecular orbital indices of HOMO(s)
array of rank 1
various metadata about the package and computation
dict
molecular orbital coefficients
list of arrays of rank 2
molecular orbital energies
eV
list of arrays of rank 1
molecular multipole moments
a.u.
list of arrays[]
orbital symmetries
list of lists
molecular electronic energies with MøllerPlesset corrections
eV
array of rank 2
multiplicity of the system
integer
number of atoms
integer
number of basis functions
integer
number of molecular orbitals
integer
natural orbital coefficients
array of rank 2
natural orbital occupation numbers
array of rank 1
natural spin orbital coefficients
list of array of rank 2
natural spin orbital occupation numbers
list of array of rank 1
flags whether an optimization has converged
Boolean
optimization status for each set of atomic coordinates
array of rank 1
(dipole) polarizabilities, static or dynamic
list of arrays of rank 2
temperature used for Thermochemistry
atm
float
geometries of each scan step
angstroms
array of rank 3
energies of potential energy surface
list
names of varaibles scanned
list of strings
values of parameters in potential energy surface
list of tuples
molecular electronic energies after SCF (HartreeFock, DFT)
eV
array of rank 1
targets for convergence of the SCF
array of rank 2
current values for convergence of the SCF
list of arrays of rank 2
temperature used for Thermochemistry
kelvin
float
time in molecular dynamics and other trajectories
fs
array of rank 1
all absorption and emission spectra (dictionary {name:
etoscs
etenergies
vibrational anharmonicity constants
1/cm
array of rank 2
cartesian displacement vectors
delta angstrom
array of rank 3
vibrational frequencies
1/cm
array of rank 1
IR intensities
km/mol
array of rank 1
Raman intensities
A^4/Da
array of rank 1
symmetries of vibrations
list of strings
Details of current implementation¶
N/A = not applicable, N/P = applicable, but not possible, T/D = to do
attributes 
ADF 
DALTON 
GAMESS 
GAMESSUK 
Gaussian 
Jaguar 
Molpro 
Molcas 
MOPAC 
NWChem 
ORCA 
Psi4 
QChem 
Turbomole 

N/A 
T/D 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
T/D 
√ 
T/D 

√ 
T/D 
√ 
√ 
√ 
√ 
√ 
T/D 
T/D 
√ 
√ 
T/D 
N/P 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
T/D 
√ 
√ 
√ 
√ 
T/D 

√ 
T/D 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
T/D 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
√ 
√ 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 

T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

N/A 
√ 
√ 
T/D 
√ 
T/D 
√ 
√ 
T/D 
√ 
T/D 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 

T/D 
T/D 
√ 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

T/D 
T/D 
√ 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

√ 
√ 
√ 
T/D 
√ 
√ 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

√ 
√ 
√ 
T/D 
√ 
√ 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
N/P 
T/D 

√ 
√ 
√ 
T/D 
√ 
√ 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

√ 
√ 
√ 
T/D 
√ 
√ 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

√ 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
T/D 
T/D 
N/A 
N/A 
T/D 
N/A 
T/D 

√ 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
T/D 
T/D 
N/A 
N/A 
T/D 
N/A 
T/D 

√ 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
T/D 
T/D 
N/A 
N/A 
T/D 
N/A 
T/D 

√ 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
T/D 
T/D 
N/A 
N/A 
T/D 
N/A 
T/D 

T/D 
T/D 
√ 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

T/D 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
T/D 

T/D 
T/D 
T/D 
T/D 
√ 
T/D 
√ 
T/D 
T/D 
T/D 
√ 
√ 
√ 
T/D 

T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 

√ 
T/D 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
T/D 
√ 
T/D 
T/D 
√ 
√ 
√ 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
T/D 
T/D 
T/D 
√ 
T/D 
√ 
√ 
T/D 

N/A 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
√ 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
√ 

T/D 
T/D 
√ 
T/D 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

T/D 
T/D 
√ 
√ 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
T/D 

T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 

T/D 
√ 
√ 
T/D 
√ 
T/D 
√ 
T/D 
T/D 
√ 
√ 
T/D 
√ 
T/D 

T/D 
T/D 
√ 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
√ 
√ 
√ 
√ 
√ 

T/D 
T/D 
√ 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 
√ 
T/D 

T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
T/D 
T/D 

T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 
T/D 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
T/D 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
T/D 
√ 
√ 
√ 
√ 

√ 
√ 
√ 
√ 
√ 
√ 
√ 
√ 
T/D 
T/D 
√ 
T/D 
√ 
√ 

T/D 
√ 
√ 
√ 
√ 
T/D 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
√ 
T/D 

T/D 
√ 
T/D 
T/D 
√ 
√ 
√ 
T/D 
T/D 
T/D 
T/D 
√ 
T/D 
√ 