How to parse and write
This page outlines the various ways cclib can be used to parse and write logfiles, and provides several examples to get you started.
From Python
Importing cclib and parsing a file is a few lines of Python code, making it simple to access data from the output file of any supported computational chemistry program. For example:
>>> import cclib
>>> filename = "water.out"
>>> parser = cclib.io.ccopen(filename)
>>> data = parser.parse()
>>> print("There are %i atoms and %i MOs" % (data.natom, data.nmo))
There are 3 atoms and 7 MOs
A newer command, ccread
, combines both the format detection and parsing steps:
>>> import cclib
>>> filename = "logfile.out"
>>> data = cclib.io.ccread(filename)
>>> print("There are %i atoms and %i MOs" % (data.natom, data.nmo))
There are 3 atoms and 7 MOs
The data
object above contains all the information cclib was able to to parse from the output file, available as attributes on the object:
>>> dir(data)
[(...), 'atomcoords', 'atommasses', 'atomnos', 'charge', (...), 'mult', 'natom, 'nbasis', ...]
You can find a full list of these attribute on the parsed data page.
From command line
The cclib package provides four scripts to parse and write data: ccget
, ccwrite
, cda
, and ccframe
.
ccget is used to parse attribute data from output files.
ccwrite has the ability to list out all valid attribute data that can be parsed from an output format. It has the added feature of writing the output file into four different formats i.e.
json
,cjson
,cml
,xyz
.cda is used for the chemical decomposition analysis of output files.
ccframe is used to write data tables from output files.
This page describes how to use the ccget, ccwrite and ccframe scripts to obtain data from output files.
ccget
The data types that can be parsed from the output file depends on the type of computation being conducted. The name of the output file used to show example usage is Benzeneselenol.out
.
Data type can be parsed from the output file by following this format:
ccget <attribute> [<attribute>] <CompChemLogFile> [<CompChemLogFile>]
where attribute
can be any one of the attribute names available here.
Atomic Charges
The atomic charges are obtained by using the
atomcharges
attribute:$ ccget atomcharges Benzeneselenol.out Attempting to read Benzeneselenol.out atomcharges: {'mulliken': array([-0.49915 , 0.056965, 0.172161, 0.349794, -0.153072, 0.094583, 0.016487, 0.050249, 0.002149, 0.01161 , 0.053777, -0.173671, 0.018118])}
Electronic Energies
The molecular electronic energies after SCF (DFT) optimization of the input molecule are printed by using the
scfenergies
attribute:$ ccget scfenergies Benzeneselenol.out Attempting to read Benzeneselenol.out scfenergies: [-71671.43702915 -71671.4524142 -71671.4534768 -71671.45447492 -71671.4556548 -71671.45605671 -71671.43194906 -71671.45761021 -71671.45850275 -71671.39630296 -71671.45915119 -71671.45935854 -71671.4594614 -71671.45947338 -71671.45948807 -71671.4594946 -71671.4594946 ]
Geometry Targets
The targets for convergence of geometry optimization can be obtained by using the
geotargets
attribute:$ ccget geotargets Benzeneselenol.out Attempting to read Benzeneselenol.out geotargets: [ 0.00045 0.0003 0.0018 0.0012 ]
Chaining of attributes
ccget provides the user with the option to chain attributes to obtain more than one type of data with a command call. The attributes can be chained in any particular order. A few chained examples are provided below.
Molecular Orbitals and Multiplicity
The number of molecular orbitals and the number of basis functions used to optimize the molecule can be obtained by running the following command:
$ ccget nmo nbasis Benzeneselenol.out Attempting to read Benzeneselenol.out nmo: 405 nbasis: 407
Enthalpy and Vibrational Frequency
The enthalpy and the vibrational frequencies of the optimized molecule is conducted is obtained below:
$ ccget enthalpy vibfreqs Benzeneselenol.out Attempting to read Benzeneselenol.out enthalpy: -2633.77264 vibfreqs: [ 129.5512 170.6681 231.4278 304.8614 407.8299 472.5026 629.9087 679.9032 693.2509 746.7694 812.5113 850.2578 915.8742 987.1252 988.1785 1002.8922 1038.1073 1091.4005 1102.3417 1183.3857 1209.2727 1311.3497 1355.6441 1471.4447 1510.1919 1611.9088 1619.0156 2391.2487 3165.1596 3171.3909 3182.0753 3188.5786 3198.0359]
ccwrite
The same Benzeneselenol.out file used in the previous examples will be used as the input file for ccwrite. When the ccwrite script is used with a valid input, it prints out the valid attributes that can be parsed from the file.
Command line format:
ccwrite <OutputFileFormat> <CompChemLogFile> [<CompChemLogFile>]
The valid output file formats are cjson
, cml
, and xyz
.
Chemical markup language (CML):
$ ccwrite cml Benzeneselenol.out Attempting to parse Benzeneselenol.out cclib can parse the following attributes from Benzeneselenol.out: atomcharges atomcoords atomnos charge coreelectrons enthalpy geotargets geovalues grads homos moenergies mosyms mult natom nbasis nmo optdone optstatus scfenergies scftargets temperature vibdisps vibfreqs vibirs vibsyms
A Benzeneselenol.cml
output file is generated in the same directory as the Benzeneselenol.out
file:
<?xml version='1.0' encoding='utf-8'?>
<molecule id="Benzeneselenol.out" xmlns="http://www.xml-cml.org/schema">
<atomArray>
<atom elementType="C" id="a1" x3="-2.8947620000" y3="-0.0136420000" z3="-0.0015280000" />
<atom elementType="C" id="a2" x3="-2.2062510000" y3="1.1938510000" z3="-0.0025210000" />
<atom elementType="C" id="a3" x3="-0.8164260000" y3="1.2153020000" z3="-0.0022010000" />
<atom elementType="C" id="a4" x3="-0.1033520000" y3="0.0183920000" z3="0.0031060000" />
<atom elementType="C" id="a5" x3="-0.7906630000" y3="-1.1943840000" z3="0.0058500000" />
<atom elementType="C" id="a6" x3="-2.1799570000" y3="-1.2059710000" z3="0.0017890000" />
<atom elementType="H" id="a7" x3="-3.9758430000" y3="-0.0253010000" z3="-0.0029040000" />
<atom elementType="H" id="a8" x3="-2.7502340000" y3="2.1291370000" z3="-0.0052760000" />
<atom elementType="H" id="a9" x3="-0.2961840000" y3="2.1630180000" z3="-0.0073260000" />
<atom elementType="H" id="a10" x3="-0.2474670000" y3="-2.1302310000" z3="0.0132260000" />
<atom elementType="H" id="a11" x3="-2.7028960000" y3="-2.1530750000" z3="0.0036640000" />
<atom elementType="Se" id="a12" x3="1.8210800000" y3="-0.0433780000" z3="-0.0038760000" />
<atom elementType="H" id="a13" x3="2.0043580000" y3="1.4100070000" z3="0.1034490000" />
</atomArray>
<bondArray>
<bond atomRefs2="a9 a3" order="1" />
<bond atomRefs2="a8 a2" order="1" />
<bond atomRefs2="a12 a4" order="1" />
<bond atomRefs2="a12 a13" order="1" />
<bond atomRefs2="a7 a1" order="1" />
<bond atomRefs2="a2 a3" order="2" />
<bond atomRefs2="a2 a1" order="1" />
<bond atomRefs2="a3 a4" order="1" />
<bond atomRefs2="a1 a6" order="2" />
<bond atomRefs2="a6 a11" order="1" />
<bond atomRefs2="a6 a5" order="1" />
<bond atomRefs2="a4 a5" order="2" />
<bond atomRefs2="a5 a10" order="1" />
</bondArray>
</molecule>
Using xyz
as the <OutputFileFormat>
with Benzeneselenol.out
, we obtain the following Benzeneselenol.xyz
file:
13
Benzeneselenol.out: Geometry 17
C -2.8947620000 -0.0136420000 -0.0015280000
C -2.2062510000 1.1938510000 -0.0025210000
C -0.8164260000 1.2153020000 -0.0022010000
C -0.1033520000 0.0183920000 0.0031060000
C -0.7906630000 -1.1943840000 0.0058500000
C -2.1799570000 -1.2059710000 0.0017890000
H -3.9758430000 -0.0253010000 -0.0029040000
H -2.7502340000 2.1291370000 -0.0052760000
H -0.2961840000 2.1630180000 -0.0073260000
H -0.2474670000 -2.1302310000 0.0132260000
H -2.7028960000 -2.1530750000 0.0036640000
Se 1.8210800000 -0.0433780000 -0.0038760000
H 2.0043580000 1.4100070000 0.1034490000
ccframe
This script creates complete tables of data from output files in some of the formats supported by pandas. Since the pandas library is not a dependency of cclib, it must be installed separately.
A complete data table can be parsed from many output files by following this format:
ccframe [--force|-f] -O <OutputDest> <CompChemLogFile> [<CompChemLogFile>...]
The argument for -O
indicates the data file to be written and its extension specifies the filetype (e.g. csv, h5/hdf/hdf5, json, pickle/pkl, xlsx).
An error will be thrown if <OutputDest>
already exists, but you can force overwriting by using the --force
(or -f
) flag.
Since higher-dimensional attributes (e.g. atomcoords
) are handled as plain text in some file formats (such as Excel XLSX or CSV), we recommend storing JSON or HDF5 files.
Observe that the output data file is overwritten if it exits already.